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Abstract: Catenanes can undergo rota-
tion of one ring through the cavity of the
other. Since macroscopic and molecular
properties must clearly vary with the
relative positions and orientations of the
interlocked components, a complete
understanding of the way that the rings
rotate is of considerable importance.
Here we show that low-dimensional
quantum-mechanical modeling can yield
rate constants and barriers similar to
those obtained by temperature-depend-

ent nuclear magnetic resonance experi-
ments. Data from both non-hydrogen
bond disrupting (e.g. CDCl3) and hydro-
gen bond disrupting (e.g. [D6]DMSO)
solvents are well reproduced demon-
strating the validity of the model. The
successful simulation of the rates of

circumrotations by entirely harmonic
transition state theory originates from
the description of the anharmonic levels
of the systems through an effective
harmonic frequency, not very different
from twice the zero point energy. The
nature of the model makes it extendable,
in principle, to the calculation of proper-
ties dependent upon circumrotational
activity.
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Introduction

Many phenomena of biological or technological interest
originate directly from submolecular motions; for example,
the trans ± cis isomerisation of a carbon ± carbon double bond
that triggers the visual signal or the solitonic behavior of
electron transport in doped conjugated polyacetylenic semi-
conductors.[1] Other remarkably complicated dynamic pro-
cesses can arise in organic systems with unusual molecular
level architectures.[2±4] The components of catenanes and
rotaxanes possess unique degrees of freedom for the con-
strained motion of one mechanically interlocked moiety with
respect to another.[2h,i] The details of the relative motions of
interlocked rings can be highly complicated, as demonstrated
during the investigation of the structure and dynamics of
several benzylic amide catenanes using molecular mechanics
calculations.[3] That study provided the first complete theo-

retical description of the lowest energy pathway for the
circumrotation of macrocycles in a catenane system, featuring
a concerted sequence of several large-amplitude motions
involving a host of rearrangements to minimise steric and
electrostatic interactions through the formation/disruption of
hydrogen bonds, p-electron stacks, CH-p electron complexes
and amide rotamer interconversions. In spite of this complex-
ity, unifying features were found for the description of the
passing of successive fragments through the macrocyclic
cavities. Analysis of the structural characteristics of the
transition states located along the circumrotational pathway
of three related catenanes furnished a comprehensive inter-
pretation of the large variation of the dynamical behaviour
observed in NMR experiments.

The fundamental and crucial question that arises from the
mechanistic treatment of circumrotation is how complicated
does the model have to be in order to derive useful
information about the system? Is it possible to describe
circumrotation in simple terms and reduce the inherently
multiple dimensionality of the process to a more manageable
size? The large masses involved in the motion, and perhaps
the lack of a better conceptual framework, have thus far
generally led to the dynamic behavior of mechanically
interlocked systems being treated in a classical context.[3]

Recently, however, it proved possible to provide a description
of the ªshuttlingº process (constrained translationÐnot
rotationÐof a macrocycle between two sites along the axis
of a thread in a rotaxane) with a quantum-mechanical
model.[4]
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Herein we construct an analogous model with the aim of
reducing the dimensionality of circumrotation in catenanes in
a consistent way, capable of yielding barriers and rate
constants similar to those determined by temperature-de-
pendent nuclear magnetic resonance experiments. The fun-
damental attraction of the present model is that the same
framework used to calculate the average kinetic energiesÐ
and hence the rate constantsÐcould be extended to calculate
any property dependent on the circumrotational activity and
temperature.

The present work stems from related quantum-mechanical
modeling performed on a different motion of a macrocycle in
a mechanically interlocked system.[4] The fundamental differ-
ence here is that we focus on constrained rotation, while
before we considered constrained translation. The previous
quantum-mechanical model was applied to peptide-based
molecular shuttles, where data were available for the relation-
ship between rates of shuttling and the inter-station distance.
The results showed good agreement between the calculated
free energy barriers and rate constants and those obtained
experimentally from NMR studies.[3] The treatment also made
evident that at energies slightly above the activation barrier to
shuttling, the probability densities of the wavefunctions are
larger in zones where they are small at lower energies.
Effectively, just above the shuttling energy barrier, the degree
of occupancy of the ªstationsº and the ªroutes of shuttlingº
are exchanged. The picture has many similarities with that of a
cart rolling along a rollercoaster shaped like a double
minimum potential. At energies below the transition state,
the cart/macrocycle sits around one of the two minima. When
its energy is barely sufficient to overcome the barrier, the cart
spends the longest time passing over it and, conversely, the
greatest probability is to find the macrocycle at, or near, the
top of the barrier. When the energy is much higher, the
turning points, where the classical particle has to slow down,
are where it is preferentially located. The model showed that
longer spacersÐcharacterized by the same barrierÐtake a
longer time for the ring to travel. The mechanical analogy was
found, however, only partially applicable: as the path
elongates, the variation of the rate constants is determined
by a quantum-mechanical effect, that is the increase of the
density of states per unit of energy.

It is clear that many similarities should exist in the
quantum-mechanical description of circumrotation in cate-
nanes and shuttling in rotaxanes. Apart from the fact that in
both cases a macrocycle is present, when circumrotation is
limited to a rotation of less than 3608 it effectively becomes
shuttling, albeit along a curved pathway. In more detail, in the
absence of mechanical interlocking, the macrocycle move-
ment is unrestricted in all directions. In a catenane its rotation
is essentially limited about an axis defined by a fragmentÐa
few bondsÐof the other ring. The motion is therefore two-
dimensional (one dimension for each ring) although, in the
end, full 3608 rotation of either ring must be identical (in
homocircuit catenanes such as 1 ± 3) to the same rotation of
the other ring. Adiabatic separation of circumrotation from
the other degrees of freedom is justified by the time scale of
the motion that is several orders of magnitude slower than any
other molecular movement. Separation of a (few) degree(s) of

freedom is well known and has been frequently used in the
study of large amplitude motions, for instance in the treat-
ment of tunneling effects.[5] In an actual quantum-mechanical
calculation the basic requisite is the description of the
potential energy. In this case, the potential is periodic and is
characterized by at least two barriers, one for the passing of
the isophthaloyl group and the other for the passing of the p-
xylyl fragment. The natural choice is therefore a periodic
sinusoidal potential that is a function of an angle which must
not be taken to be that of rigid rotation, rather, it is a
coordinate that compounds all the effects, that is, structural
rearrangements, encountered during the motion. The cou-
pling between the rotation of either ring with that of the other
is also assumedÐin an equivalent of a ªmean field approx-
imationºÐto be effectively included in the one-dimensional
potential. This does not imply that the two rings move
independently from each other, indeed if the other macro-
cycle were not present the motion would be free, but rather
that each ring experiences along the rotation the average
effect of the other. Other potential energy functions could be
used along with additional parameters, for instance other
secondary minima could be introduced, but they would
unnecessarily complicate the investigation without modifying
the conclusions that are reached at the end of this work.
Success or failure of the treatment proves the validity of the
assumptions and the approximations undertaken in the
calculations. It is worth mentioning that the generic sinusoidal
potential has found many applications in chemistry. Note-
worthy in their simplicity and generality are the applications
to the torsions of ethane and ethylene.[6]

Even with the simplifying assumptions outlined above,
solution of the quantum-mechanical problem is challenging.
The permutation group symmetryÐnot point group symme-
tryÐof the system is, however, rather high and can provide
further assistance.[7] The symmetry is dictated by four
operations that are intrinsic to the rotation by an angle f
and do not modify the Hamiltonian. Apart from the identity,
they are the �f!ÿf reflection, the f!f�p rotation, and
the f!p-f roto-reflection. In the calculations, the potential
energy function is constructed as a series of adjoining
sinusoidal segments of the type given in Equation (1), where

V(f)�Ei

2

�
cos(af�b)� 1

2

�
(1)

a and b are chosen to satisfy the symmetry and energy
conditions which are V(0)�V(p)�V(2p)�E1; V(p/2)�
V(3p/2)�E2 with E2<E1; V(cp/2)�V(pÿ cp/2)�V(p� cp/
2)�V(2pÿ cp/2)� 0 and Ei�E2 for cp/2�V�pÿ cp/2 and
c�p/2�V� 2pÿ cp/2;0�V� cp/2, pÿ cp/2�V�p� cp/2
and 2pÿ cp/2�V� 2p and Ei�E1; c was set to 0.45 to avoid
the introduction of further symmetry that would arise if c�
0.5. All the integrals required by the numerical matrix
solution of the Schrödinger equation were calculated by using
an algebraic manipulator.

The rate constant of circumrotation at room temperature
k298 was estimated by thermal averaging the microcanonical
rates, k(Ei) [Eq. (2)], where Ei>Ebarrier, that is only the levels
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above the barrier give rise to circumrotation (no tunneling), T
is the kinetic energy operator, the bracket means calculation
of the expectation value for the i-th level and I is the moment
of inertia. Equation (2) gives an upper value of the rate
constants because the use of the kinetic energy implies
squared velocities and, for any quantity q, <q2>�< q> 2.
Importantly, the kinetic energy term operator can be replaced
by any operator to yield circumrotation dependent properties.
The free energy of activation DG= was obtained by using the
transition state theory (TST; [Eq. (3)])[8] relation where Q is
the partition function given in Equation (4) (in this approach
and within TST the partition function at the transition state is
one).

DG=�Ebarrier�kBTlnQmin (3)

Q�
X

i

eÿ
Ei

kB T (4)

Results and Discussion

The model illustrated in the previous section can be used to
simulate the dynamical data of the catenanes with two
different intents. The first is to reproduce the experimental
rates of circumrotation and obtain the quantum mechanical
barriers, the second is to drive the calculations to reproduce
the Eyring-derived barriers and obtain, in turn, the quantum-
mechanical rates of circumrotation. CoincidenceÐor near
coincidenceÐof the results of the two approaches would
prove the circumrotational action of these systems is an ideal
case for the Eyring treatment and implicitly show that they
satisfy its underlying conditions.[8] As an initial step for the
whole treatment, Figure 1 shows a typical two-dimensional

Figure 1. Potential energy surface of the circumrotational pathway.

potential energy surface (PES) of the complete circumrota-
tion of the two rings of a benzylic amide [2]catenane, where f1

and f2 obey the same conditions illustrated above for f. The
periodicity and the symmetry of the PES are striking and
derive from the symmetry considerations and the assumptions

outlined in the previous section. Apart from variations in the
heights of the saddle points, the general features of this
potential are common to the three catenanes and the two
solvent systems. Table 1 shows the results of the fitting. Very
similar rates of circumrotations and energy barriers were
obtained starting both from the experimental rates of circum-
rotation and the Eyring theory derived barriers. Considering
the exponential dependence of the rates on the barriers, the
agreement can be deemed very satisfactory. Importantly, the
experimental free energies of activation DG= and rate
constants k depend strongly not only on the molecular
structure but also on the solvent used. Table 1 provides the
calculated rate constants both for hydrogen bonding and non-
hydrogen bonding solvents. Whilst solvent variation probably
affects the microscopic detail of the dynamics of the system, in
the present model, this is reflected only, and can only be
reflected, in the energy barriers. The success in capturing the

Table 1. Experimental and quantum-mechanical energy barriers and rate
constant, at 298 K, for the circumrotational action in three benzylic amide
catenanes.
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Compound[a] kexp [Hz] DG=
exp [kcal molÿ1] kcalcd [Hz] DG=

calcd [kcal molÿ1]

1
A 72 12.3 72.86 12.68 (10.81)[b]

14.5 14.61 (12.74)
B 16000 ± 15447 10.00 (8.04)

11.3 11.43 (9.47)

2
A 0.003 11.3 0.0033 12.78 (10.97)

20.5 20.54 (18.73)
B 0.2 ± 0.239 10.76 (8.90)

17.9 18.01 (16.14)

3
A 9600 ± 10526 7.95 (5.95)

11.6 11.70 (9.70)
B 28000 ± 27269 7.01(4.97)

11.0 11.06(9.02)

[a] A: measurements of k and DG= were performed in CDCl3, a non-hydrogen
bond disrupting solvent. B: Measurements of k and DG= were performed in
[D6]DMSO, a hydrogen bond disrupting solvent. [b] The potential energy
barrier is given in parentheses.
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changes of the rates through modifications of energy barriers
further strongly supports the validity of the model.

The agreement between experiment and theory confirms
that the assumptions of the present model are reasonable and
that a) the circumrotational motion can be separated from the
other degrees of freedom, b) the effective coordinate of
circumrotation can be described quite simply as a sinusoidal
potential.

Figure 2 shows the deviation from perfect, or equal,
harmonic spacing of the energy levels associated to the
potential of Figure 1, as a function of the energy. Such spacing
governs the partition function Q which is ultimately respon-
sible for the rates of circumrotation. In agreement with the
trend observed in the calculations of the shuttling in
rotaxanes,[4] catastrophic changes occur at the energies of

Figure 2. Deviation from harmonic spacing of the energy levels of the
potential energy surface of the circumrotational pathway.

the two barriers. Notice that the cusp behavior at E�Ebarrier

shared also by the constrained translation,[4] is a quantum-
mechanical effect that could not have been anticipated
without solution of the Schrödinger equation. Importantly,
the closer to one another the levels, the more easily they are
thermally populated, and the larger the partition function Q
and hence DG=. The anharmonic behavior of Figure 2 is
readily explained if one considers that at the PES minimum
the motion of the rings only slightly deviates from the pure
harmonic regime. As the energy increases, the effect of the
anharmonicity of the potential appears and the spacing
between the levels decreases until the potential maximum,
with very dense levels, is reached. Above the maxima, one-
dimensional barrierless rotation occurs. In this regime, level
spacing goes up with the square of the quantum number of the
level and therefore strongly deviates, in the opposite way of
that observed below the barrier, from the equal energy
separation of the harmonic oscillator regime.

Importantly, the strong deviations from harmonicity seem
to counter the ability to simulate the rates of circumrotation in
non-hydrogen bonding solvents within a harmonic description
of the transition state theory (TST) that was recently
achieved.[3b] It should, however, be borne in mind that in the
TST only the temperature-dependent partition function is
required. Table 2 shows the values of harmonic frequency
required to give the same value of the partition function at
room temperature obtained by using the energy levels of the

potential. Significantly, such values are very close to twice the
zero point energy. The agreement between the two has
fundamental practical consequences. So long as the partition
function of circumrotation is well simulated by an effective
harmonic frequency, the harmonic TST treatment can provide
accurate results.

Whilst the general behavior of the levels and the dynamics
of these complicated molecules is now better understood, its
quantum component emerges and analysis of the system
wavefunctions becomes of fundamental interest. In Figure 3,
one can see the squares of the wavefunctions of three selected
levels. At low energies, probed only by low temperatures, the
system is localized at the minima where each macrocycle
circumscribes one of the amide groups of the other. When the
first barrier is overcome, the highest probability to find the
macrocycle moves away from the -CONHCH2- group and the
macrocycle is most probably found around one of the five- or
six-membered rings. Surmounting the second barrier pro-

Table 2. Effective harmonic wavenumber[a] nÄ [cmÿ1] and twice the zero
point energy (2� zpe, [cmÿ1] for the six cases considered in Table 1.

nÄ 2� zpe

1 A 8.65 8.96
1 B 7.44 7.72
2 A 9.56 9.91
2 B 8.74 9.05
3 A 6.93 7.21
3 B 6.48 6.77

[a] The effective harmonic wavenumber is defined as the frequency which
gives the same partition function of that calculated from the energy levels
of the sinusoidal potential.
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Figure 3. Square of the wavefunction for three selected levels: At energies
lower than the barrier, the rings sit at either one of the stations, at energies
just above the barrier, the degree of occupancy of route and stations are
reversed. At higher energies, the probability resembles that of a classic
oscillator and population of the low energy stations is again favored.

duces the same kind of behavior. Effectively, in terms of
probability, stations and the routes connecting them are
switched by increasing the energy of the system. The analogy
of a cart on a rollercoaster previously used to describe the
constrained translational motion of a macrocycle is even more
relevant here where the potential, that is the rollercoaster, has
a series of hills and troughs.

The present treatment has an interesting implication; the
coalescence of the NMR signals at high temperatures.[3a] In
rough terms, the spectral position of an NMR signal is given
by the atomic chemical shift which may vary along each,
infinitesimal, stretch averaged over the circumrotational
pathway. The contribution of each ªsegmentº has to be
weighed over the probability of having the system in it. If the
probability is low, the final contribution to the overall
response is low. In reality, one should use an equivalent of
Equation (2) to calculate the expectation value, where, the
operator would be the chemical shift expressed as a function
of the circumrotational coordinate. The accurate calculation
of chemical shifts is a recent development and is not yet
practical for systems of this size. However, the possibility of
reducing the complexity of the special degree of freedom of
catenanes to a model manageable in quantum-mechanical
calculations, and its accurate description of the molecules
dynamics in different conditions, opens the way to simulate
any molecular property affected by circumrotation.

Conclusion

In benzylic amide catenanes, the circumrotation mustÐto a
fair approximationÐbe describable in a classical manner. In
agreement with this idea, activation energies and rate
constants derived quantistically are in good agreement with
the experimental rate constants and the barriers obtained by
applying Eyring theory to the NMR data. The quantum-
mechanical treatment offers, however, further remarkable

insight into dynamics of these systems. In analogy to the case
of shuttling in rotaxanes, the probability density to locate the
macrocycle closely resembles the behavior of a rollercoaster
cart slowly surmounting the top of the loops when its energy is
comparable to the potential energy of the saddle point. In this
sense, the coalescence of the NMR peaks with the temper-
ature increase is therefore not only due to rapid exchange of
the stations of the rings but is also caused by their most
probable location which, at energies just above the barrier, is
at a five- or six-membered ring. Finally, the treatment also
explains the successful simulation of the rates of circum-
rotation by transition state theory in the harmonic approx-
imation which is ultimately due to the possibility of effectively
simulating the partition function of the highly anharmonically
spaced levels of the circumrotational potential in terms of an
effective harmonic vibration.
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